Probability and Statistics

Probability

Set theory is foundational to probability. If you need a refresher, try https://www.statlect.com/mathematical-tools/set-theory.

Mathematics of Probability

Probability Distributions

Distribution Parameters PDF/PMF CDF
Binomial
  • $n \in \mathbb{Z}$ (trials)
  • $p \in (0, 1)$
  • $q = 1 - p$
$\binom{n}{k}p^k q^{n-k}$
  • $I_q \left( n - \lfloor k \rfloor, 1 + \lfloor k \rfloor \right)$
  • $I_q$ is the regularized beta function
Geometric $p \in (0, 1)$
$X$ = Trials for success $Y = X-1$ failures before success
$(1-p)^{k-1} p$ $(1-p)^k p$
$X$ = Trials for success $Y = X-1$ failures before success
  • $x < 1 : 0$
  • $x \ge 1 : 1 - (1-p)^{\lfloor x \rfloor}$
  • $x < 0 : 0$
  • $x \ge 0 : 1 - (1-p)^{\lfloor x \rfloor + 1}$
Poisson $\lambda \in (0, \infin)$ (rate) $\frac{\lambda^k \euler^{-k}}{k!}$
  • $\frac{\Gamma \left( \lfloor k + 1 \rfloor, \lambda \right)}{\lfloor k \rfloor !}$
  • $\Gamma$ is the upper incomplete Gamma function
Normal
  • $\mu \in \mathbb{R}$ (mean)
  • $\sigma^2 \in (0, \infin)$ (variance)
$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \euler^{-\frac{1}{2} \left( \frac{x - \mu}{\sigma} \right)^2}$
  • $\Phi \left( \frac{x - \mu}{\sigma} \right) = \frac{1}{2} \left[ 1 + \rm{erf} \left( \frac{x - \mu}{\sigma \sqrt{2} } \right) \right]$
  • $\rm{erf}$ is the Error Function
$\chi^2$ $k \in \mathbb{N}$ (degrees of freedom)
  • $\frac{1}{2^{k / 2} \Gamma(k/2)} x^{k/2 - 1} \euler^{-x/2}$
  • $\Gamma$ is the Gamma function
  • $\frac{1}{\Gamma(k/2)}\gamma \left( \frac{k}{2}, \frac{x}{2} \right)$
  • $\gamma$ is the lower incomplete Gamma function
Non-central $\chi^2$
  • $k \in \mathbb{N}$
  • $\lambda \in \mathbb{R}_{>0}$ (non-centrality parameter)
  • $\frac{1}{2}\euler^{-(x+\lambda)/2} \left( \frac{x}{\lambda} \right)^{k/4 - 1/2} I_{k/2-1}(\sqrt{\lambda x})$
  • $I$ is the modified Bessel function of the first kind
  • $1 - Q_{\frac{k}{2}} \left( \sqrt{\lambda}, \sqrt{x} \right)$
  • $Q$ is the Marcum Q function

Table of Functions

Function Notation Definition
Error Function $\rm{erf}$ $\rm{erf} = \frac{1}{\sqrt{\pi}} \int_{-x}^{x} \euler^{-t^2} \diff{t}$
Regularized Beta Function $I_z(a,b)$ $I_z(a,b) = \frac{B_z(a, b)}{B(a,b)}$
Incomplete Beta Function $B_z(a,b)$ https://mathworld.wolfram.com/IncompleteBetaFunction.html
Complete Beta Function $B(a,b)$ https://mathworld.wolfram.com/BetaFunction.html
Gamma Function $\Gamma(n)$
  • $n \in \mathbb{N}: \Gamma(n) = (n - 1)!$
  • $n \in \mathbb{C}: \Gamma(z) = \int_0^\infin t^{z-1} \euler^{-t} \diff{t}, \Re(z) > 0$
Lower Incomplete Gamma Function $\gamma(s,x)$ $\gamma(s,x) = \int_0^x t^{s-1} \euler^{-t} \diff{t}$
Upper Incomplete Gamma Function $\Gamma(s,x)$ $\Gamma(s,x) = \int_x^\infin t^{s-1} \euler^{-t} \diff{t}$
Modified Bessel function of the First Kind $I_v(y)$ $I_v(y)= \left( \frac{y}{2} \right)^v \sum_{j=0}^\infin \frac{(y^2/4)^j}{j! \Gamma(v + j + 1)}$
Marcum Q Function $Q_v(a,b)$ $Q_v(a,b) = \frac{1}{a^{v-1}} \int_b^\infin x^v \rm{exp} \left( - \frac{x^2 + a^2}{2} \right) I_{v-1}(ax) \diff{x}$

Expected Value

\( \E[\cdot] \) is the Expected Value operator, so \( \E[X] \) is the expected value of \( X \).

Assumptions

Real Random Variables

Complex Random Variables

A complex random variable can always be treated as a vector of real random variables (real and imaginary parts).

Bibliography

  1. Taboga, Marco (2021). "The mathematics of probability", Lectures on probability theory and mathematical statistics. Kindle Direct Publishing. Online appendix. https://www.statlect.com/fundamentals-of-probability/probability
  2. Taboga, Marco (2021). "Properties of the expected value", Lectures on probability theory and mathematical statistics. Kindle Direct Publishing. Online appendix. https://www.statlect.com/fundamentals-of-probability/expected-value-properties
  3. Wikipedia contributors, "Complex random variable," Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=Complex_random_variable&oldid=1185345835 (accessed January 11, 2024)
  4. Wikipedia contributors, "Probability axioms," Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=Probability_axioms&oldid=1194504777 (accessed January 11, 2024)
  5. Wikipedia contributors, "Random variable," Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=Random_variable&oldid=1189421773 (accessed January 11, 2024)