Distribution |
Parameters |
PDF/PMF |
CDF |
Binomial |
- $n \in \mathbb{Z}$ (trials)
- $p \in (0, 1)$
- $q = 1 - p$
|
$\binom{n}{k}p^k q^{n-k}$ |
- $I_q \left( n - \lfloor k \rfloor, 1 + \lfloor k \rfloor \right)$
- $I_q$ is the regularized beta function
|
Geometric |
$p \in (0, 1)$ |
$X$ = Trials for success |
$Y = X-1$ failures before success |
$(1-p)^{k-1} p$ |
$(1-p)^k p$ |
|
$X$ = Trials for success |
$Y = X-1$ failures before success |
- $x < 1 : 0$
- $x \ge 1 : 1 - (1-p)^{\lfloor x \rfloor}$
|
- $x < 0 : 0$
- $x \ge 0 : 1 - (1-p)^{\lfloor x \rfloor + 1}$
|
|
Poisson |
$\lambda \in (0, \infin)$ (rate) |
$\frac{\lambda^k \euler^{-k}}{k!}$ |
- $\frac{\Gamma \left( \lfloor k + 1 \rfloor, \lambda \right)}{\lfloor k \rfloor !}$
- $\Gamma$ is the upper incomplete Gamma function
|
Normal |
- $\mu \in \mathbb{R}$ (mean)
- $\sigma^2 \in (0, \infin)$ (variance)
|
$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \euler^{-\frac{1}{2} \left( \frac{x - \mu}{\sigma} \right)^2}$
|
- $\Phi \left( \frac{x - \mu}{\sigma} \right) = \frac{1}{2} \left[ 1 + \rm{erf} \left( \frac{x - \mu}{\sigma \sqrt{2} } \right) \right]$
- $\rm{erf}$ is the Error Function
|
$\chi^2$ |
$k \in \mathbb{N}$ (degrees of freedom) |
- $\frac{1}{2^{k / 2} \Gamma(k/2)} x^{k/2 - 1} \euler^{-x/2}$
- $\Gamma$ is the Gamma function
|
- $\frac{1}{\Gamma(k/2)}\gamma \left( \frac{k}{2}, \frac{x}{2} \right)$
- $\gamma$ is the lower incomplete Gamma function
|
Non-central $\chi^2$ |
- $k \in \mathbb{N}$
- $\lambda \in \mathbb{R}_{>0}$ (non-centrality parameter)
|
- $\frac{1}{2}\euler^{-(x+\lambda)/2} \left( \frac{x}{\lambda} \right)^{k/4 - 1/2} I_{k/2-1}(\sqrt{\lambda x})$
- $I$ is the modified Bessel function of the first kind
|
- $1 - Q_{\frac{k}{2}} \left( \sqrt{\lambda}, \sqrt{x} \right)$
- $Q$ is the Marcum Q function
|